top of page

Canada Piping Engineering Services



Piping Engineering is a discipline that is rarely taught in a university setting, but is extremely important for the safety of plant personnel, safety of the public, and reliability of a facility.

The Goal of Piping Engineering is:







When plant evaluations and repairs of existing pipe, are being performed, often plant operations and maintenance personnel ask, “Is it going to be safe to work around here?” An answer they always appreciate from the piping engineer; “I’ll be out here checking on the pipe when the plant starts up.” The plant personnel just want to be assured that we are doing everything in our power to make the piping system safe to operate. This experience leads to a more personal definition of Piping Engineering:


To the uninitiated, this personal definition may seem a little alarmist, but it is based on reality. Pipes do fail, and sometimes with catastrophic results. Operations and maintenance personnel at plants understand the potential risks. While some major failures of high pressure lines have killed personnel, sometimes even relatively low pressure releases can cause injury and extended plant shutdowns. A release of toxic, flammable fluids or hazardous chemicals is a tremendous risk to personnel and neighbors and a large financial risk to operators.

Engineers sometimes get caught up in the numbers and minute detail of the designs. While details are important, it is also important to personalize the work and think about the full picture of the installation, and the long - term equipment’s use. While you may not be standing next to that pipe or equipment, someone will be – and their safety should always be in your mind when considering if all appropriate considerations have been made, and the calculations are accurate.


On the surface, pipe is pretty simple – a round bar with a hole in it to transport a fluid or gas. However, there is no other equipment within a typical plant that is subjected to so many different loading conditions over its life.

  • Pipe is supported at point locations, and must be able to support itself without undue sagging or bowing.

  • The weight of the pipe may change from empty to full at times, which on large diameter pipes can create dead weight double or triple the empty weight.

  • Temperatures vary from ambient to operating, sometimes greater than 1200F in process or steam systems, or less than -300F in a cryogenic application.

  • As the pipe heats and cools it moves due to thermal expansion. Pipe flexibility and pipe supports must accommodate this movement.

  • Pipe is attached to equipment, which has a limited capacity to support the pipe.

  • As the pipe ages, it tries to find its lowest stress level, and thus it “relaxes” – almost always into a different position than the theoretical analysis calculates.

  • Flexible pipe is sometimes analogous to supporting spaghetti, as it bends and twists from all of its various loading conditions. Changing a support in one location sometimes has a major effect on pipe movement 80 feet away.

  • Depending on the operating conditions, the pipe material may degrade over time due to creep, embrittlement or some other metallurgical phenomena.

  • Pipe stress analysis is not very exact. There is a great deal of judgment that is required in evaluating the results.

  • Standard pipe specifications allow +, - 12.5% variation in wall thickness. While most pipe thickness is within 1% to 2% of nominal; at any welded joints, the actual wall thickness may be 12.5% different than expected.

  • There are a high number of different components in each piping system: elbows, straight pipe, reducers, valves, flow meters, thermowells, pressure taps, branch connections, flanges, gaskets, bolts, etc. In a typical plant, when the sizes and schedules of all these components are counted, there may be much more than 10,000 different components.

This represents a large quantity of data to understand, and to properly identify and track through the design, installation and operation of plants.

  • Even with great engineering and design, the installation is subject to irregularities in the fabrication and erection of the pipe. Pipe fitters will rotate weld joints and pull pipe to “make the pipe fit”. While some of this can be controlled with very strict Quality Assurance, the reality is that it will occur. Engineering must try to control and then assure enough conservatism in the design that fabrication tolerances do not create significant problems.

  • Pipe has its limitations in age and usage. Pipe may corrode, erode, metallurgical characteristics may age; all of which will change its strength and flexibility characteristics.

  • Pipe supports springs can wear out, or fail due to overload, corrosion or other external factors.

  • Modifications have often been made to existing piping systems without sufficient consideration, and the result has been damaged pipe and an unreliable plant.


The specification is designed to introduce you to the basic concepts of piping engineering. By reading the specifications, manuals and codes you should know

  • The location of information on the design, engineering, fabrication and inspection of pipe.

  • Understand how to identify a piping system

  • Understand the basic loading conditions

  • Understand the basic failure modes

  • Identify the different types of pipe supports and their purposes

  • Understand the information required to perform a pipe stress analysis.

There are several basic principles that will be described and stressed throughout this course.

  1. Piping systems can and do fail. Engineering should always consider possible failure modes and work to avoid the possibility that the piping system will fail.

  2. Even in the best-engineered systems, there are assumptions built into the design. The engineer and designer should recognize these assumptions and allow appropriate allowances.

  3. Pipe stress analysis is only one portion of piping engineering. There are other major considerations before performing the stress analysis. If the preparation work has been done well, very few piping system designs will fail the pipe stress evaluation criteria.

  4. Because of the high number of possible loading conditions, and the numerous variations in components that make up a typical piping system, it is doubtful if the pipe stress is accurate by better than plus - minus 20%. Do not design to the limit of the pipe allowable stress unless there is a good understanding of the loading conditions and a strong quality assurance program.

  5. Pipe must always be viewed as a system from equipment to equipment, including branch lines, and pipe supports.

  6. As with all engineering design, understand the purpose and operation of the system before performing the detailed design.

  7. Pipe is an industrial plant must be maintained. It is commonly thought that properly engineered and installed pipe is “good forever” and can be left as is. The vast majority of pipe will operate successfully for decades, but some systems are known to be susceptible to damage and failure. Periodic inspections and repairs should be planned and performed on the appropriate piping systems to assure safe and reliable operation.


Typically a Piping & Instrumentation Diagram (P&ID) drawing sets the fundamental requirements showing the pipe size, schematic of the equipment connections and primary branch connections. This is considered the starting point for Piping Engineering.

Before routing and engineering the pipe, a design basis must be set. In this section the basic requirements are defined. Later sections describe some of the requirement details.


The design basis for any project should state the required design codes for materials and equipment. This is usually set by the client, and the engineer should review the requirements to assure they are complete and not contradictory. Local laws may require special requirements for hurricanes, earthquakes or other public safety issues.

The base rules for piping engineering are the ASME B31 Codes (herein referred to as the Codes). Each Code provides the typical loading conditions to be considered; allowable stresses; minimum wall thickness calculations; and minimum fabrication, inspection and testing requirements. Other major codes are listed that may apply in certain situations. This is not an all-inclusive list

Depending on the plant location and the type of facility, it may be legally mandatory to comply with ASME and other codes. Even if there is no legal requirement, the client, and insurance underwriters may require compliance/with ASME codes. And at a minimum, good engineering practices should be followed that are described in the Codes.

If a facility is outside the United States there may be a set of international Codes that are prescribed.

In most plants, one piping code applies to all piping systems, but sometimes it is not appropriate to take this approach. A petrochemical plant may be designed to B31.3, but there may be a power boiler supplying power, and that piping should be designed to B31.1 and parts may be designed to ASME Boiler & Pressure Vessel Code. Pipelines designed to B31.4 and B31.8 may change to B31.3 when brought out of the ground for a compressor station or processing facility.

In the history of the B31 Codes before the 1960’s, all facility pipes were covered by one code. As plants became larger and more complicated, the attributes of typical plants lead to different loading conditions, and different methods of defining safety factors. If all pipe rules had been left in one Code, it is likely that undue conservatism would have been applied to large numbers of pipe in order to create a Code that “One size fits all.” Some of the driving factors to different approaches include:

  • Power piping is focused on high pressure and high temperature water and steam with very few chemicals. The plants tend to be vertical, which creates high thermal vertical movements that must be accommodated by spring supports. Plants are usually away from residential areas and the potential for damage to nearby landowners is typically insignificant.

  • Petrochemical plants typically operate at much lower pressures and temperatures than power plants, but the various chemicals result in corrosion issues, and the use of many special alloy materials. These plants are also laid out horizontally with most pipe supports being rigid on pipe racks. Plants are often in large industrial areas. If there is a fire or explosion, there is always a concern in minimizing the damage to the local area of a plant or unit within a plant. Explosions may release hazardous chemicals in the air or in water, and thus mechanical integrity must always be a primary design criterion.

  • Pipelines are typically underground with no thermal considerations. The pipes are not put in bending at supports, and thus design rules allow thinner pipe for the same pressure compared to B31.1 and B31.3. Pipelines may be in unpopulated areas, or running through suburban and urban areas. Because of the potential for damage to nearby landowners, rules are different based on the pipe’s proximity to populated areas.

There are a number of similarities in each Code, such as in the calculation of minimum wall thickness, inspection and testing. But the exact rules are different, depending on the type of facility. Allowable stresses are different in each code, reflecting a different factor of safety based on the expected use and operation of the facility.

The Codes contain some rules and minimum standards, but for the most part, they provide guidance and items to consider. For example, B31.1, says the “Design shall consider seismic events” but it provides no methodology to perform the calculations, or even a design basis to create the seismic loads.

Since the Codes provide minimum acceptance levels based on simplified approaches, more rigorous analysis, inspection and testing methods can be applied when appropriate.

The Codes are design codes and are not intended for maintenance and operation of piping systems. In the past few years some non-mandatory appendices have been adopted concerning maintenance, and it is expected that maintenance and inspection guidelines will be added in coming years. See for example, B31.1, Appendix V, Recommended Practice for Operations, Maintenance and Modifications of Power Piping Systems. API has several Recommended Practices for inspection and evaluation of piping, such as API 570, 574, 579 and 580.

Once a Code has been selected to apply to a particular piping system, only that code should be applied. For example, it is not allowed to use a minimum wall thickness calculation from B31.3, an allowable stress value from B31.8, and an inspection method from B31.1. While it appears obvious that we cannot “cherry pick” the aspects we like from each Code, there are many times that the Codes are incomplete or give no guidance for certain conditions. In these situations it is appropriate to research other codes, technical papers and other published documents for guidelines to properly engineer the piping system. With this information, a rational engineering judgment can be made that is at least as conservative as the governing Code.

Other standards that are often referenced in piping engineering are:

The rules and guidance in the Codes and standards are based on experience, laboratory tests, theoretical stress analysis, and good engineering judgment. Those who practice piping engineering must understand the applications of the rules, and be cognizant of types of fabrication, loading conditions and other factors that need to be considered in each piping system.

As with most Codes, rules and guidelines, there is almost no method to adequately provide rules for all possible loading conditions, piping configurations and applications. Even the most experienced piping engineers must consider the loading conditions that could apply to each piping system to assure that everything reasonable has been done to assure “It is safe for you to stand next to that pipe.”


Defining the appropriate loading conditions to be applied to each piping system is often the most difficult portion of the work. As will be clear in the later discussions, the routing of the pipe and the types of pipe supports and other considerations are based on the loading conditions. It is imperative that the loading conditions to be considered and the magnitude be defined before starting the detailed design. Otherwise, detail design may be a waste of time, and may lock in design constraints that cannot be resolved.

The loading conditions can be split into two groups, static and dynamic. The static loads also have a transition loading as pipe moves from one condition to another, but in most cases, the transition loading is not separately considered, unless it is so rapid as to be a dynamic load. Dynamic loads may be design requirements, such as safety valve thrust, but they may also be conditions that need to be avoided by proper engineering of valve operating speeds, proper draining, fluid velocities or other considerations.

Static Loading:
  1. Temperature – may be multiple operating temperatures and temperature cycles.

  2. Pressure – may be standard operating pressure, upset condition pressures and design pressure

  3. Equipment Movements – typically related to the thermal movement of the pipe as the equipment heats up and cools down. Equipment movement must also be considered in wind and seismic loading conditions.

  4. Dead weight, to include pipe, fluid, in-line components, insulation, branch lines, pipe support attachments, and any other attachments.

  5. Wind – while this is technically a dynamic condition, it is usually analyzed as an “equivalent static” condition.

  6. Cyclic conditions created by “batch” operations in which a pipe may be alternately filled and emptied many times a day. Depending on the process, this may need to be considered a “static fatigue” such as thermal, or a Dynamic Loading Condition.

Dynamic Loading:
  1. Steam hammer created by sudden closure of valves creating pressure waves in the pipe. These are typically very fast acting valves at 0.5 to 0.05 seconds, installed to protect turbine generators from over speed conditions.

  2. Surge or pressure waves caused by opening or closing in-line valves. This condition is differentiated from steam hammer, as this situation is often in pipelines, or other long pipes in which it may take minutes to establish or stop flow. If the valves operate too quickly, large unbalanced pressure forces can create a “surge”.

  3. Thrust created by safety valve, rupture disk or other devices openings for pressure relief of a system.

  4. Water hammer or other condition created by two phase flow. There are multiple definitions of water hammer, but some of the worst conditions are created by high temperature steam suddenly impacting water in a pipe. The sudden flashing of water to steam can be so great that there is no practical way to design for the loads. The engineering solution is to avoid the possibility of such a situation.

  5. Thermal shock from rapid cooling or heating of a pipe surface. Again this situation should be avoided by proper design, as most materials will crack and fail from thermal shock.

  6. Seismic event

  7. Pipe whip created by sudden fracturing of a pipe. This is a nuclear power plant consideration and not discussed in this course.

  8. Various upset conditions that can be created by an out of control chemical reaction. The usual consideration is temporary high temperature and/or high pressure operation. Depending on the transition speed during the upset condition, this might be analyzed as a static loading condition.

  9. Various upset conditions that can be caused by loss of controls to valves and other devices that may cause a sudden fail close or fail open condition that can create the pressure waves and thermal shock conditions.

  10. Flow induced vibrations can be created by various sources. A reciprocating compressor discharge pipe must be specifically designed with “bottles” to dampen the

vibration. Other sources of vibrations can be pumps, cycling valves, batch operation or multiple sources of fluids that may be mixed together. Except for the reciprocating compressor issue, rarely are flow induced vibrations analyzed, but reliance is made of using appropriate “Rules of thumb for velocities in pipes. If problems are observed in the field, then remedial methods are used.


The interface between pipe and equipment is extremely important and must be properly managed throughout the design process.

  • Location, size and type of each nozzle on the equipment match the piping design.

  • Design conditions (temperature and pressure) are consistent with the pipe.

  • Safety valve set pressure is set to be consistent with the pipe operating conditions.

  • Equipment nozzle movements due to temperature can be accommodated by the pipe flexibility and supports.

  • Loads applied by the piping on the nozzles are acceptable to the equipment manufacturer.

  • If the equipment manufacturer insists on expansion joints at the nozzle, is the pipe routed, and the pipe supports arranged to make this acceptable?

Equipment manufacturers are primarily focused on producing a product that will do its job, i.e. a pump that creates the correct head and flow rate over the operating conditions, vessels that create the correct internal chemical reactions, etc. Pipe connections are necessary, but are not the vendor’s focus. Over the years, some manufacturers have developed standards that are so thoroughly focused on minimizing the loads from pipe, that it is almost impossible to meet the required loads. One of the best protections for proper piping engineering is to set reasonable allowable loads in the Request For Proposal for rotating equipment. Vendors can often accept higher loads safely, but they need to understand the requirement when the request for equipment is first made.

There is a second set of equipment requirements that is discussed in the Section, “System Approach”. Some vendors provide piping on a skid or as part of their equipment that connects to the remainder of the plant piping. The piping on the equipment must be considered as part of the piping system in all loading conditions. Depending on the situation, this can be a difficult process to manage technically, and contractually.


It is expected that a client that is paying millions or hundreds of millions of dollars for a plant has specific features that are desired. Most of these preferences are focused on equipment performance. However, there are often preferences on types of valves, plant arrangement, valve manufacturers, material specifications, corrosion allowance and even pipe supports.

The piping engineer should have a discussion with written direction on each of these preferences prior to starting design. Discussion should also focus on general approach to design, what the deliverable drawings will look like and contain, and specifics on all components. Keep these discussions going as detailed design decisions are made.

Often acceptable designs are considered unacceptable by the client because these preferences were not properly discussed and agreed to early in the process. Likewise, sometimes client preferences are based on an individual or group’s experience that has little to do with the current design. This leads to some dictates such as “No spring hangers”, “Install expansion joints on every pump suction and discharge nozzle”, or other requirements that waste client money, make the design very difficult to develop and actually make the design less safe. Sometimes clients will listen to logic, and sometimes they can adequately explain the reason for their preference, but sometimes long term client dissatisfaction with an engineer is created by such arbitrary rules.


The selection of the proper materials is a complex task that must occur before detail design begins. This is even more important now than in the past, since most major pipe is designed using 3D modeling techniques, and the model is specification driven.

These specifications may derive from client standards, a design engineering company’s standards, a previous project or even a standard industry database. No matter the source, it must be carefully checked to assure it matches the requirements for this particular project and service. Older specifications may be out of date due to changes in Code requirements, changes in valve manufacturer available models, and changes in standard available pipe sizes and fittings.

Some standards allow multiple choices for certain components, such as flanged or butt welded, socket welded or flanged, multiple choices for valves, and multiple choices for inspection and testing. It is strongly recommended that choices be limited before beginning design. If there are different requirements for different systems, create more material specifications. This reduces confusion at the design, engineering, material purchase, fabrication and construction steps in a project.

If there are critical chemical requirements that can create corrosion, assure a metallurgical specialist reviews the specifications in detail. Assure all components are reviewed, as the pipe may be correct, but if the wrong gasket is specified the pipe may still leak.

Method of pipe manufacture can be important in the long-term reliability of a system. In particular, seamless pipe is usually preferred over seam welded pipe for reliability and safety. When a seamless pipe fails at a circumferential weld, typically a crack opens up in one portion of the weld around the circumference. Usually, this opening relieves some of the stresses that are propagating the crack, limiting the opening size. Obviously this can still be a dangerous situation, but the leak is “limited”. In a seam welded pipe, if a crack develops in a seam weld, it can propagate the full length of the seam weld between circumferential welds. This is referred to as a “catastrophic failure” and results in a “nearly total, instantaneous release” of the contained fluid. Large diameter pipes are expensive to purchase in seamless configuration, and thus seam welded pipe is commonly supplied.


One issue that seems to continually cause confusion in material specifications is the design conditions, primarily the design and operating temperatures and pressures. Material specifications are typically split into classes based on type of material, pressure and temperature. It is common to see materials that indicate a group of materials are adequate from -20F to 600F up to 700 psig, and the next group of materials is satisfactory from -20F to 600F and 1200 psig. This is all very reasonable to minimize material costs as the largest possible group of standard materials is ordered.

However, there can be a serious misunderstanding when individual piping systems are considered. Table 2.1 shows three line numbers all designed to material specification A1. Each line has a completely different set of operating and upset conditions for design.

When engineering a system, the line design conditions should be used for analyzing for thermal conditions. Just because a material specification is satisfactory for all components at 600 psig @ 650F, does not mean that the piping system should be engineered for the maximum material specification temperature. If so designed, it would be a large waste of money in designing pipe and supports to conditions the piping system will never experience.

Unfortunately some practitioners have applied the material specification values in a line list for the operating and /or design conditions. This practice should not be done. When performing retrofit work, it needs to be recognized that the existing design and operating conditions on a line list may not represent the conditions the piping systems were engineered for.



In every piping system there are multiple potential failure modes. As noted initially, most piping systems operate decades with little or no damage. But of those systems that have failed, usually they have root cause(s) in which some basic fundamental issues were not adequately understood, considered, and/or designed for.

A special caution for plant modifications: A system that is modified needs to be completely reconsidered, even if only a small section of pipe is being replaced. The assumptions that may have been entirely appropriate for the original design may be violated by what is seemingly a minor change. Most petrochemical plants have a formal Management of Change (MOC) procedure to consider these issues. The procedure is extremely important. If an engineer is working on a plant without a formal MOC approval procedure, the engineer should assure that the entire piping system is still acceptable when a design or operational change is being made.

In other sections there are discussions of corrosion, thermal, pressure, and dynamic loading conditions that need to be evaluated. Some of the other failure modes that should be considered include:

  1. Velocities of fluid are extremely important in determining whether a piping system will erode. In fluid conditions, velocities of 15 feet per second in straight pipe, is a general standard. However, every change in direction, reducer or branch will locally accelerate the flow. Some major failures have occurred when multiple components were tied together, (a branch to a reducer to an elbow) and the pipe eroded when the local velocity was more than 3 times greater than expected. One of the industry solutions has been to use a hardened material, such as a chrome-moly alloy to reduce the erosion at locations that might be susceptible. Steam and gas velocities are usually an order of magnitude greater than fluid flow before any concern of erosion exists.

  2. Hardened pipe is often also specified on systems such as condensate drains in which two phase flow may be expected. This failure mode is often described as Flow Accelerated Corrosion (FAC) in which the corrosion layer is removed by locally high fluid velocity; the corrosion layer is re-established and then removed again by the fast moving fluid. Over time, the corrosion reestablishes and is then removed again, eventually creating very thin pipe in local areas around bends and branches.

  3. At low temperatures, embrittlement of normal steels can occur. Special low temperature alloys need to be specified.

  4. At high temperatures (above 800F for carbon steel and higher temperatures for certain alloys) creep damage can degrade the pipe. Creep is a time – stress – temperature dependent process that creates voids in the grain boundaries and has been the root cause of some of the worst piping failures in power plants.

  5. A special consideration for high temperature pipe. Catastrophic failures have occurred in seam welded high temperature pipes due to creep degradation, high stress intensification at the seam weld and other issues. Many studies have been performed by the Electric Power Research Institute (EPRI), Materials Properties Council (MPC), and other organizations, to determine the root causes of high temperature seam welded pipe failures. While knowledge and understanding has been advanced, there is not a set of exact root cause(s), and design recommendations have never been achieved. Large numbers of these pipes have been replaced with seamless pipe because the industry is not capable of guaranteeing the condition of seam welded pipe. Seam welded pipe should not be specified for installation in which it will be operating in the material’s creep range. The long term strength of the pipe cannot be adequately analyzed and assessed based on information available today. If seam welded pipe is used in such applications, Owner must understand that 100% inspection should be performed periodically over the life of the system.

  6. Embrittlement can also happen at high temperatures when hydrogen in the fluid travels in the grain boundary and creates hydrogen embrittlement. Depending on the material and fluid, this can happen at relatively low temperatures or high temperatures.

  7. Dissimilar metals welds can cause failure in piping systems. At times, it was common in the industry to install stainless steel thermowells and other components in carbon steel or alloy piping systems. As experience has found, any dissimilar metal weld that operates at elevated temperatures, can be susceptible to thermal cracking. Dissimilar metals may have different thermal expansion rates. Even on small welds, with time cracking may develop and installed components such as thermowells, have been known to “shoot out of the pipe.” Dissimilar metal welds can be safely made using the correct weld material and base materials, but they must be selected with care.

  8. Any component inserted into the flow has the potential to create vortices that can create vibrations and fail the component. This is called vortex shedding and improperly designed components can break off. One example is a thermowell inserted into the flow.

  9. Branch connections in high flow can also create vortex shedding at the opening. The result is often an audible “whistling” and can result in erosion of the nozzle, and ultimately failure. The design solutions usually are to reduce the flow rate locally in the area of the branch, and to round the contour so that there are no sharp edges.


All piping systems are engineered to transport a fluid or gas safely and reliably from one piece of equipment to another. The system may be easy to define as the pipe and supports from one pump to a tank or multiple pumps to multiple tanks. However, there are almost always other pipe branches in a system for drains, vents, safety relief, introduction of chemicals, extraction for other purposes, etc. It is also necessary to include all pipe supports in the definition of a piping system, as the design and functioning of these supports have a great deal to do with the reliability and safety of any piping system.

Sometimes system boundaries are confused by contractual limits. For example, if a skid mounted pump is supplied with several feet of pipe by the skid supplier, and a different engineer ties in to route the pipe to a tank, “What is the end of the piping system?” From an engineering perspective, the system is still from the pump to the tank. The coordination and political issues may be more difficult when multiple vendors are designing one piping system, but it is imperative that one entity have responsibility to assure the entire piping system has been engineered properly.


Fig. 3.1 depicts an even more complicated scenario in which a boiler and turbine vendor supply some of the pipe that is primarily engineered by the Balance of Plant Engineer. In these cases, both equipment pipes must be analyzed with the connecting pipe, and the pipe supports properly sized for the system.

A major consideration is how to consider branch connections on a piping system. A general rule of thumb is “Include all branches in the analysis if the ratio of the mainline section modulus to the branch line section is less than a factor of 7. The logic is that if the branch line is much smaller than the main line, then the small line cannot significantly affect the main line. One exception is if the small line is supported such that it restricts the movement of the main line.

The consideration of branch connections and equipment piping can be difficult when evaluating static loads. If dynamic loads are also significant, then the coordination and analysis issues are multiplied.

Sometimes it is impractical to include all of the piping system in one analysis because of the timing of the design and construction, the number of branch lines, or the complexity of multiple design conditions. A method that is commonly used is to install an anchor in a piping system. (See Section 6 for the definition of an anchor.) The pipe on either side of the anchor can be analyzed as totally separate systems. There are often advantages to this approach in limiting pipe movement, controlling the number of design conditions, and even in limiting pipe support loads and pipe stresses. If it is expected that future branch connections will be added later, it is a great benefit to locate an anchor on the pipe near this branch point. It will facilitate the future design and engineering.

If a support is included in the analysis, then it must be designed and installed in the piping system to match the analysis.

This rule seems so obvious that it should not need to be stated, but due to poor communication between piping engineers, designers and structural engineers, this fundamental rule has been violated an amazing number of times.



Depending on the normal service conditions, possible upset conditions, types of equipment it is connected to, and external sources, there are a number of possible pressure loading conditions that need to be considered, and the pipe engineered to contain the fluid safely and reliably.

Virtually every pipe must contain an internal or external pressure. Internal pressure is defined as,”The pressure inside the pipe is greater than the external pressure around the pipe.” This is the most common occurrence and the rules in the B31 codes are very specific on the rules for calculating minimum pipe wall thickness.

When pressure is applied to the inside of the pipe, there are two primary stresses created, Longitudinal Pressure Stress = Slp = P(D2- d2) /d2

Where P= Design Pressure

D= Outside Pipe Diameter, nominal d = Inside Pipe Diameter, nominal

S = Allowable Stress at design temperature

E = Quality factor based upon fabrication technique and /or inspection quality y = Design Factor for temperature

CA = Corrosion Allowance (Ref. B31.1, Section 102.3.2)

The other Codes have slightly different variations on this same equation.

Slp is the stress created attempting to pull the pipe along its length. As shown in Figure 4.1, the pipe is pulled apart along its length, and each of the formulas approximates the stress in the pipe along its axial direction.

An analogy that is often useful to consider is a fire hose. When the valve is opened the hose may jump and move violently on the ground as flow is established. This hose movement is caused by an unbalanced pressure force, in each length of the hose, as the flow is initiated. Once a steady state flow is established, the hose is stable as all pressure forces are balanced by the forces at all the other bends in the hose.

At the hose nozzle, there is a sudden pressure drop from the hose pressure to near atmospheric pressure, and the nozzle must be restrained or it will swing around in an unpredictable pattern.

This hose analogy will be used in discussing some of the dynamic loading conditions and expansion joints.


The second pressure stress is the Hoop Stress, which is created by the pressure expanding the pipe circumferentially. The hoop stress is approximately twice the longitudinal pressure stress. Except for ASME B31.8, the Codes do not specifically calculate the hoop stress. Instead it is included in the method to calculate the minimum wall thickness, tm.

tm = (P D/ 2 (SE+Py)) + CA

The equations again vary somewhat between the Codes, but the basic equation is similar.

These wall thickness and longitudinal pressure stress calculations appear straight forward, but there are important considerations.

Design Pressure may be set based on different criteria:

  • Set at the maximum expected operating pressure, or perhaps the operating pressure plus 3% to 10%. Most safety valves can be set at 3% to 10% accumulation and this factor matches the Design Pressure to the safety valve release pressure.

  • Set at the design pressure for a group of standard materials. For example, there may be a standard carbon steel material set up for all pipe operated up to 500 psig. While the operating pressure may be only 100 psi, the system design pressure may be 500 psi. This system makes the purchase and control of materials much easier than creating a different material specification for relatively minor changes in pressure.

  • There may be an upset condition that the pressure (and temperature) can temporarily spike above normal operation. Both B31.1 and B31.3 allow temporary loading conditions for minutes or even hours at these higher conditions. If the event pressure spike is small enough and short enough duration, then perhaps the design pressure does not have to be increased. But if either time or magnitude limits are exceeded, the design pressure must be increased to assure the pipe design meets Code requirements. Note that B31.4 and B31.8 do not have this temporary upset limitation.

  • Maximum pressure may be set by equipment limitations, such as the dead head pressure of a pump, or the maximum allowable pressure in an attached pressure vessel.

  • Maximum pressure may be set by in-line or attached equipment pressure limitations, such as the maximum allowable pressure on a valve.

Corrosion Allowance (CA) is often defined by the owner. CA should be based on the environment that can create external corrosion, and the fluid that may create internal corrosion and /or erosion. Typical values are 0.0” for superheated steam systems, to 1/32” to 1/8” for chemical systems.

External pressure on pipe exists on a small percentage of piping systems. In some cases the pipe may typically be subjected to external pressure, but an upset condition can create a vacuum that can collapse the pipe. None of the B31 Codes provide rules for calculating minimum wall thickness and reinforcement for this condition. Typically, thickness calculations are made by referring to the ASME Boiler and Pressure Vessel Code, Section VIII, Section ULT. This section defines calculations for pressure vessels subject to a vacuum pressure, and the equations can be adapted for pipes.


When a material is heated, it expands. B31.1 and B31.3 contain Tables in the Appendices that define the expansion rate for most metals. These are averages based on classes of materials. For most steels, a useful approximation is

Expansion in inches/ 100 feet of length = (Oper Temp – 100)/100.

For a pipe operating from an ambient temperature of 70F to an operating temperature of 1000F, a 100 foot length of pipe will lengthen approximately (1000-100)/100 = 9”, and a line operating at 500F would expand 4” over 100 feet. The more exact values provided in the codes should be used in any detailed calculations.